An α1 II Gly913 to Cys substitution prevents the matrix incorporation of type II collagen which is replaced with type I and III collagens in cartilage from a patient with hypochondrogenesis

Author(s):  
Stefan Mundlos ◽  
Danny Chan ◽  
Jim McGill ◽  
John F. Bateman
Keyword(s):  
Type I ◽  
Type Ii ◽  
1989 ◽  
Vol 109 (3) ◽  
pp. 1363-1369 ◽  
Author(s):  
B Swoboda ◽  
R Holmdahl ◽  
H Stöss ◽  
K von der Mark

Collagen type XI is a component of hyaline cartilage consisting of alpha 1(XI), alpha 2(XI), and alpha 3(XI) chains; with 5-10% of the total collagen content, it is a minor but significant component next to type II collagen, but its function and precise localization in cartilaginous tissues is still unclear. Owing to the homology of the alpha 3(XI) and alpha 1(II) collagen chains, attempts to prepare specific antibodies to native type XI collagen have been unsuccessful in the past. In this study, we report on the preparation and use for immunohistochemistry of a polyclonal antibody specific for alpha 2(XI) denatured collagen chains. The antibody was prepared by immunization with the isolated alpha 2(XI) chain and reacts neither with native type XI collagen nor type I, II, V, or IX by ELISA or immunoblotting, nor with alpha 1(XI) or alpha 3(XI), but with alpha 2(XI) chains. Using this antibody, it was possible to specifically localize alpha 2(XI) in cartilage by pretreating tissue sections with 6 M urea. In double immunofluorescence staining experiments, the distribution of alpha 2(XI) as indicative for type XI collagen in fetal bovine and human cartilage was compared with that of type II collagen, using a monoclonal antibody to alpha 1(II). Type XI collagen was found throughout the matrix of hyaline cartilage. However, owing to cross-reactivity of the monoclonal anti-alpha 1(II) with alpha 3(XI), both antibodies produced the same staining pattern. Cellular heterogeneity was, however, detected in monolayer cultures of human chondrocytes.(ABSTRACT TRUNCATED AT 250 WORDS)


Hand Surgery ◽  
1996 ◽  
Vol 01 (01) ◽  
pp. 79-88
Author(s):  
K.Y. Chiu ◽  
J. Xie ◽  
W.K. Ngai ◽  
K.S.E. Cheah ◽  
T. Kuffner ◽  
...  

Full thickness articular bone-cartilage defects were created in the acetabulae of 35 adult rabbits. A double-layered titanium mesh was used in each hip so as to substitute for the bone defect. Free periosteal grafting was then sutured over the mesh, and the hip was subjected to continuous passive motion for 1 week in each rabbit. Under light microscopy, islands of chondroid tissues were shown to be present from 2 weeks onwards, and the dominant reparative tissue was hyaline-like cartilage after 6 months. The normal degree of metachromasia of the matrix by Safranin-0 staining was achieved in most but not all the specimens that were hyaline-like under the microscope. Analysis of the collagen types synthesised by the grafts revealed a combination of both type II and type I collagens. Immunohistochemical staining showed intense positive staining around the chondrocyte lacunae when stained with anti-type II collagen antibodies with the one-year group of rabbits. Although metachromasia of the matrix and collagen typing suggested that fibrocartilage was formed in addition to the hyaline cartilage, the gross appearance and nature of reparative tissues formed were quite promising. Periosteal grafting over a metallic, non-biological surface that provided the shape of the osseous defect in a massive articular defect was therefore a possible alternative.


Development ◽  
1993 ◽  
Vol 117 (1) ◽  
pp. 245-251
Author(s):  
R. Quarto ◽  
B. Dozin ◽  
P. Bonaldo ◽  
R. Cancedda ◽  
A. Colombatti

Dedifferentiated chondrocytes cultured adherent to the substratum proliferate and synthesize large amounts of type I collagen but when transferred to suspension culture they decrease proliferation, resume the chondrogenic phenotype and the synthesis of type II collagen, and continue their maturation to hypertrophic chondrocyte (Castagnola et al., 1986, J. Cell Biol. 102, 2310–2317). In this report, we describe the developmentally regulated expression of type VI collagen in vitro in differentiating avian chondrocytes. Type VI collagen mRNA is barely detectable in dedifferentiated chondrocytes as long as the attachment to the substratum is maintained, but increases very rapidly upon passage of the cells into suspension culture reaching a peak after 48 hours and declining after 5–6 days of suspension culture. The first evidence of a rise in the mRNA steady-state levels is obtained already at 6 hours for the alpha 3(VI) chain. Immunoprecipitation of metabolically labeled cells with type VI collagen antibodies reveals that the early mRNA rise is paralleled by an increased secretion of type VI collagen in cell media. Induction of type VI collagen is not the consequence of trypsin treatment of dedifferentiated cells since exposure to the actin-disrupting drug cytochalasin or detachment of the cells by mechanical procedures has similar effects. In 13-day-old chicken embryo tibiae, where the full spectrum of the chondrogenic differentiation process is represented, expression of type VI collagen is restricted to the articular cartilage where chondrocytes developmental stage is comparable to stage I (high levels of type II collagen expression).(ABSTRACT TRUNCATED AT 250 WORDS)


2006 ◽  
Vol 19 (2) ◽  
pp. 117-126 ◽  
Author(s):  
M. Sakuma ◽  
K. Hatsushika ◽  
K. Koyama ◽  
R. Katoh ◽  
T. Ando ◽  
...  

1977 ◽  
Vol 146 (3) ◽  
pp. 857-868 ◽  
Author(s):  
D E Trentham ◽  
A S Townes ◽  
A H Kang

We have found that intradermal injection of native type II collagen extracted from human, chick or rat cartilage induces an inflammatory arthritis in approximately 40% of rats of several strains whether complete Freund's adjuvant or incomplete Freund's adjuvant is used. Type I or III collagen extracted from skin, cartilage proteoglycans and alpha1(II) chains were incapable of eliciting arthritis, as was type II collagen injected without adjuvant. The disease is a chronic proliferative synovitis, resembling adjuvant arthritis in rats and rheumatoid arthritis in humans. Native type II co-lagen modified by limited pepsin digestion still produces arthritis, suggesting that type-specific determinants residing in the helical region of the molecule are responsible for the induction of disease. Since homologous type II collagen emulsified in oil without bacterial preparations regularly causes the disease, this new animal model of arthritis represents a unique example of experimentally-inducible autoimmunity to a tissue component.


Development ◽  
1988 ◽  
Vol 103 (1) ◽  
pp. 111-118 ◽  
Author(s):  
C.J. Devlin ◽  
P.M. Brickell ◽  
E.R. Taylor ◽  
A. Hornbruch ◽  
R.K. Craig ◽  
...  

During limb development, type I collagen disappears from the region where cartilage develops and synthesis of type II collagen, which is characteristic of cartilage, begins. In situ hybridization using antisense RNA probes was used to investigate the spatial localization of type I and type II collagen mRNAs. The distribution of the mRNA for type II collagen corresponded well with the pattern of type II collagen synthesis, suggesting control at the level of transcription and mRNA accumulation. In contrast, the pattern of mRNA for type I collagen remained more or less uniform and did not correspond with the synthesis of the protein, suggesting control primarily at the level of translation or of RNA processing.


Development ◽  
1989 ◽  
Vol 105 (1) ◽  
pp. 85-95 ◽  
Author(s):  
J.M. Fitch ◽  
A. Mentzer ◽  
R. Mayne ◽  
T.F. Linsenmayer

Previous studies have demonstrated the presence of type II collagen (in mature chickens predominantly a ‘cartilage-specific’ collagen) in a variety of embryonic extracellular matrices that separate epithelia from mesenchyme. In an immunohistochemical study using collagen type-specific monoclonal antibodies, we asked whether type IX collagen, another ‘cartilage-specific’ collagen, is coexpressed along with type II at such interfaces. We confirmed that, in the matrix underlying a variety of cranial ectodermal derivatives and along the ventrolateral surfaces of neuroepithelia, type II collagen is codistributed with collagen types I and IV. Type IX collagen, however, was undetectable at those sites. We observed immunoreactivity for type IX collagen only within the notochordal sheath, where it first appeared at a later stage than did collagen types I and II. We also observed type II collagen (without type IX) beneath the dorsolateral ectoderm at stage 16; this correlates with the period during which limb ectoderm has been reported to induce the mesoderm to become chondrogenic. Finally, in older hind limbs we observed subepithelial type II collagen that was not associated with subsequent chondrogenesis, but appeared to parallel the formation of feathers and scales in the developing limb. These observations suggest that the deposition of collagen types II and IX into interfacial matrices is regulated independently, and that induction of mesenchymal chondrogenesis by such matrices does not involve type IX collagen. Subepithelial type IX collagen deposition, on the other hand, correlates with the assembly of a thick multilaminar fibrillar matrix, as present in the notochordal sheath and, as shown previously, in the corneal primary stroma.


Author(s):  
Stefan Nehrer ◽  
Howard A. Breinan ◽  
Arun Ramappa ◽  
Sonya Shortkroff ◽  
Gretchen Young ◽  
...  
Keyword(s):  
Type I ◽  

Sign in / Sign up

Export Citation Format

Share Document